Downstream structure and evolution of a simulated CME-driven sheath in the solar corona

نویسندگان

  • Y. C.-M. Liu
  • M. Opher
  • Y. Wang
  • T. I. Gombosi
چکیده

Context. The transition of the magnetic field from the ambient magnetic field to the ejecta in the sheath downstream of a coronal mass ejection (CME) driven shock is analyzed in detail. The field rotation in the sheath occurs in a two-layer structure. In the first layer, layer 1, the magnetic field rotates in the coplanarity plane (plane of shock normal and the upstream magnetic field), and in layer 2 rotates off this plane. We investigate the evolution of the two layers as the sheath evolves away from the Sun. Aims. In situ observations have shown that the magnetic field in the sheath region in front of an interplanetary coronal mass ejection (ICME) form a planar magnetic structure, and the magnetic field lines drape around the flux tube. Our objective is to investigate the magnetic configuration of the CME near the sun. Methods. We used the space weather modeling framework (SWMF), a 3D magnetohydrodynamics (MHD) simulation code, to simulate the propagation of CMEs and the shock driven by it. Results. We find that close to the Sun, layer 2 dominates the width of the sheath, diminishing its importance as the sheath evolves away from the Sun, in agreement with observations at 1 AU.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Shock Waves in the Interplanetary Medium

The shocks in the solar corona and interplanetary (IP) space caused by fast Coronal Mass Ejections (CMEs) are simulated numerically and their structure and evolution is studied in the framework of magnetohydrodynamics (MHD). Due to the presence of three characteristic velocities and the anisotropy induced by the magnetic field, CME shocks generated in the lower corona can have a complex structu...

متن کامل

Signatures of two distinct driving mechanisms in the evolution of coronal mass ejections in the lower corona

[1] We present a comparison between two simulations of coronal mass ejections (CMEs), in the lower corona, driven by different flux rope mechanisms presented in the literature. Both mechanisms represent different magnetic field configurations regarding the amount of twist of the magnetic field lines and different initial energies. They are used as a “proof of concept” to explore how different i...

متن کامل

A Simulation of a Coronal Mass Ejection Propagation and Shock Evolution in the Lower Solar Corona

We present a detailed simulation of the evolution of a moderately slow coronal mass ejection (CME; 800 km s 1 at 5 R , where R is solar radii) in the lower solar corona (2Y5 R ). The configuration of the Sun’s magnetic field is based on the MDI data for the solar surface during Carrington rotation 1922. The pre-CME background solar wind is generated using the Wang-Sheeley-Arge (WSA) model. To i...

متن کامل

Automated Lasco Cme Catalog for Solar Cycle 23 : Are Cmes Scale Invariant ?

In this paper we present the first automatically constructed LASCO CME catalog, a result of the application of the Computer Aided CME Tracking software (CACTus) on the LASCO archive during the interval September 1997-January 2007. We have studied the CME characteristics and have compared them with similar results obtained by manual detection (CDAW CME catalog). On average CACTus detects less th...

متن کامل

Evidence of Eit and Moreton Waves in Numerical Simulations

Solar coronal mass ejections (CMEs) are associated with many dynamical phenomena, among which EIT waves have always been a puzzle. In this Letter MHD processes of CME-induced wave phenomena are numerically simulated. It is shown that as the flux rope rises, a piston-driven shock is formed along the envelope of the expanding CME, which sweeps the solar surface as it propagates. We propose that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011